Meet the Secondary Payloads Riding into Orbit with Soyuz

On Friday, July 14, a Soyuz rocket will lift off from the Baikonur Cosmodrome with the largest number of satellites ever lifted by the Russian workhorse rocket. Although not breaking the world record for most satellites launched in one go, Soyuz will deliver the substantial number of 73 satellites to orbit. The pack is led by the Kanopus V-IK remote sensing satellite that represents the primary payload of the mission.

The 72-satellite cluster heading into orbit on Friday as secondary payload comprises five microsatellites from 17 to 120 Kilograms and 67 CubeSats – seven 6U, fifty-nine 3U and one 1U for a total of 220 CubeSat Units.

Click the following images for detailed technical overviews of each individual payload:

 

Weighing in at 120 Kilograms is the Flying Laptop developed at the University of Stuttgart, combining a technology demonstration mission with operational application for Earth observation and ship-tracking. The satellite is outfitted with a multi-spectral imager for Earth-observation at 21.5m resolution, a 160-meter Panoramic Camera, an AIS ship-tracking platform, and OSIRIS, a laser communications terminal that could enable high-data-rate communications up to 100Mbit/s for small satellite missions. – Photo: IRS/Universität Stuttgart

 

The 43-Kilogram WNISAT-1R, operated by Weather News Inc, hosts a four-camera imaging system to monitor the northern latitudes along with a Global Navigation Satellite System Reflectometry Instrument for sea state measurements to deliver data for safe ship traffic through the Arctic Sea. – Image: Weathernews

 

TechnoSat of the University of Berlin has a launch mass of 18kg and demonstrates the TUBiX satellite platform for future operational use and tests out various technologies such as a Fluid Dynamic Actuator for attitude control via pumping liquid metal through a ring, a high-precision star tracker for small satellites, high-speed S-Band transmitters and nano reaction wheels. The satellite also hosts a DLR payload for measuring impacts of small objects. – Image: TU Berlin / DLR

 

NORSat-1 (<30kg) and NORSat-2 (16.7kg) are operated by the Norwegian Space Center for the collection of Automatic Identification System data to monitor ship traffic in the Norwegian territorial waters. The #1 satellite also hosts a Total Solar Irradiance radiometer for data continuation of this ‘Essential Climate Variable’ as well as a Langmuir probe for space weather measurements. NORSat-2 is equipped with a VHF Data Exchange (VDE) payload to enable the relay of Application Specific Messages. – Image: UTIAS

 

CICERO-1, 2 and 3 join the CICERO-6 satellite launched earlier this year to establish a constellation of 6U CubeSats gathering radio occultation measurements of Earth’s atmosphere for operational meteorology and surface remote sensing through backscattered signals from the GPS and Galileo satellite constellations. – Image: Tyvak

 

Corvus-BC 1 and 2 are the first two of at least ten 6U CubeSats building the Landmapper-BC constellation segment operated by AstroDigital to deliver Earth imaging data for the commercial market and to track the global economy of food production. The 11-Kilogram BC satellites, achieving a 22-meter ground resolution, will be joined by 20 Corvus-HD satellites to capture higher resolution imagery, but of smaller areas. – Image: Astro Digital

 

MKA-N 1 and 2 are 6U Earth-imaging CubeSats built by Dauria Aerospace for operation by Roscosmos to capture 22-meter imagery of Earth in three color bands. They are similar to the Corvus-BC satellites because both come from a former U.S.-Russian partnership that branched out into two different programs. – Photo: Dauria Aerospace

 

Mayak, a 3U CubeSat, is the most interesting payload of this mission for satellite observers, aiming to create an artificial star brighter than any other man-made object in orbit, even surpassing the brightness of the International Space Station. The small satellite will deploy four triangular reflectors each with a surface of four square meters to create a tetrahedral shape that will be placed into an intentional tumbling motion to create a twinkling star passing through the sky. While interesting for hobby observers, astronomers who fight to keep skies as dark as possible are not particularly happy about the crowdfunded project. – Image: CosmoMayak

 

NanoAce is a technology demonstration satellite built by Tyvak Nano Satellite Systems, California to test out the company’s Endeavor platform (pictured) that is available for various operational missions. The satellite is outfitted with two visible and two IR cameras as well as a cold gas propulsion system with eight thrusters. – Image: Tyvak Nano Satellite Systems

 

Eight Lemur-2 CubeSats are aboard the Soyuz to join Spire Global’s constellation satellites collecting ship-tracking data on a global scale for commercial distribution and measuring atmospheric profiles through GPS occultation to assist in operational meteorology. These will bring the total number of Lemur-2 satellites launched into orbit to 48, not all of which are still in orbit or operational. – Photo: Spire

 

Planet’s Flock-2k Doves, a total of 48 CubeSats, will be orbited by Soyuz, expanding the company’s Earth Scanner in Sun Synchronous Orbit that is capable of imaging the entire Earth once per day. Flock-2k is the second largest group of Doves orbited in one go, following up on the launch of 88 Doves in February aboard the Indian PSLV rocket to establish the Earth Scanner. – Credit: NASA

 

The secondary payloads are rounded up by Iskra-MAI-85, a 3U CubeSat from the Moscow Aviation Institute, and the sole 1U CubeSat of this mission, Ecuador-UTE-YuZGU – developed under a partnership by the Ecuadorian Universidad Tecnológica Equinoccial and the Russian Southwestern State University.